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CALCULATED INTERACTION ENERGY AND DIPOLE MOMENT 

IN COLLISIONS OF TWO HYDROGEN MOLECULES 

by R. W. Patch 

Lewis Research Center 

SUMMARY 

Ab initio calculations of the interaction energy and electric dipole moment of two 
colliding hydrogen molecules were carried out on a digital computer using the ortho­
gonalized valence -bond theory of McWeeny . Methods of calculating accurate values of 
all molecular integrals are given in some detail for cases with equal or unequal orbital 
exponents (screening constants). Linear, planar perpendicular, quadrilateral, and non­
planar perpendicular configurations were included with intermolecular distances from 
2.5 to 5.5 bohrs (0.13 to 0.29 nm) and internuclear distances in the hydrogen molecules 
of 1.401446 and 1.450000 bohrs (0.0741599and 0.0767292 nm). A weighted average of 
the interaction energies of the four equilibrium configurations was then taken for  each 
intermolecular distance. 

The interaction energies obtained appear to be valid for intermolecular distances less 
than 4.5 bohrs (0.24nm) but are too large at appreciably greater intermolecular distances 
because of insufficient allowance for  electron correlation in the wave function. A simple 
average interaction energy (Morse potential) for practical applications is cited which 
correlates experiments for  intermolecular distances greater than 4.0 bohrs (0.21nm) 
and correlates the calculations in this report for intermolecular distances less than 
4.0 bohrs-(0.21nm). 

The electric dipole moments obtained with the full valence-bond model appear to be 
approximately correct for intermolecular distances up to 4.5 bohrs (0.24nm), but for  
appreciably larger distances are too small  because of limitations of the model. Deriva­
tives of the electric dipole moment with respect to the internuclear distances were also 
calculated. 



INTRODUCTlON 

In high-temperature propulsion devices such as gas-core nuclear rockets, an impor­
tant mechanism of heat transfer is radiant energy exchange between volumes of gas and 
between the gas and the wall (refs. 1and 2). When such devices use high pressure hydro­
gen, it is necessary to know the strength of pressure-induced infrared absorption to 
calculate the heat transfer. This strength depends on the interaction energy and electric 
dipole moment of two colliding hydrogen molecules (Hz - H2) and has not been measured 
much above room temperature. At the temperatures that occur in these high-temperature 
propulsion devices, smaller intermolecular distances become' important in calculating 
the strength. 

The object of the work herein described was to calculate interaction energies and 
electric dipole moments for small  intermolecular distances. The results should also be 
useful for calculating high-temperature transport properties of gases containing hydrogen 
and for calculating the equation of state of high-pressure hydrogen for application to light-
gas guns. 

Past work on H2 - H2 interaction energy may be divided into ab initio calculations, 
semiempirical calculations, and experiments. These three types of work will be dis­
cussed in subsequent paragraphs. In none of these interaction energy calculations was 
the dipole moment calculated, but the dipole moment by itself was calculated in a semi-
empirical calculation by another investigator. 

Ab initio calculations for H2 - H2 have been carried out in 10 studies. For those 
unfamiliar with this type of calculation, a review of the methods used has been given by 
Slater (ref. 3). The H2 - H2 calculations may be divided into two groups: those where 
approximations were used fo r  some molecular integrals, and those where all molecular 
integrals were calculated accurately. Since the interaction energy is a sensitive function 
of the molecular integrals, this is an important distinction. Griffing and Vanderslice 
(ref. 4) calculated energy of linear H4. Griffing and MaEek (ref. 5) calculated the energy 
of square H4. Ruffa and Griffing (ref. 6) computed the interaction energy of linear 
H2 - Ha. All  three of these studies used approximations for some of the molecular 
integrals. Accurate values of the integrals were used by Taylor (ref. 7) for the energy 
of linear H4, Magnasco and Musso (refs. 8 to 12) for the energy of quadrilateral and 
skewed H2 - H2, Magnasco, Musso, and McWeeny (ref. 13) for the energy of quadrilateral 
and skewed H2 - H2, and by Schwartz and Schaad (ref. 14) for the energy of linear H4. 
None of the studies using accurate values of the integrals were done for a sufficient 
number of configurations to permit proper averaging of the interaction energies over 
nuclear configuration space, although this is necessary for practical applications. 

Semiempirical calculations of H2 - H2 interaction energy have been made by 
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Side view End view 
Molecule 1 X Molecule 2 
1.401446 1.401446 


Y 1 
C R r u l u -(a) Linear configuration A with equilibrium internuclear distances 

(ref. 261 for the two molecules. 
1.45 1.401446 

0 4  0 

(b) Linear configuration 6 with greater-than-equilibrium internuclear 
distance for molecule 1 and equilibrium internuclear distance for 
molecule

1 
2. 

1.401446 

1.401446 C ! 

(c) Planar perpendicular configuration C with equilibrium inter-
nuclear distances for the two molecules. 

1.401446
i.45 ­
(d) Planar perpendicular configuration D with greater-than­

equil ibrium internuclear distance for molecule 1 and equi­
l ibr ium internuclear distance for molecule 2. 

h 

1.401446 -1.45 
b
T 
(e) Planar perpendicular configuration E with equilibrium inter-

nuclear distance for molecule 1 and greater-than-equilibrium xinternuclear distance for molecule 2. 

1.401446 11.401446 x 
(f) Quadrilateral configuration F with equil ibrium internuclear 

distances for both molecules. 

1.45 x1.401446 L

(g) Quadrilateral configuration G with greater-than-equilibrium 

internuclear distance for molecule 1 and equil ibrium internu­

1
clear distance for molecule 2. L401446,7 

1.401446 
0 .x­

(h) Nonplanar perpendicular configuration H with equil ibrium inter-
nuclear distances for both molecules. 

1.401446: 


1.45 0 $. 
(i)Nonplanar perpendicular configuration I with greater-than­

equil ibrium internuclear distance for molecule 1 and equil ibrium 
internuclear distance for molecule 2. 

Figure 1. - Nine configurations of two hydrcgen molecules used in calcu­
lations. Intermolecular distance R had values of 2.5, 3.5, 4.5, and 
5.5 bohrs (1bohr - 5.29167~10-~~ Internuclear distances in them\. 
figure are in bohrs Ind to scale). 
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Margenau (ref. 15) (corrected by Evett and Margenau in ref. 16), Mason and Hirsch­
felder (ref. 17), Vanderslice and Mason (ref. 18), and Abrams, Patel, and Ellison 
(ref. 19). A semiempirical calculation of the H2 - H2electric dipole moment has been 
made by Van Kranendonk and Kiss (ref. 20). 

Experiments pertinent to H2 - H2 average interaction energy involve hydrogen vis­
cosity and equation of state measurements. A large number of measurements of these 
two types have been made, but most were not at high enough temperatures to give any 
indication of the H2 - H2 interaction energy at small  intermolecular distances. However, 
Guevara and Wageman (ref. 21) measured hydrogen viscosity to 2340 K. Fisher (ref. 22) 
f i t  Guevara and Wageman's data together with lower temperature viscosity and equation­
of-state data with a Morse intermolecular potential, which should therefore be valid 
down to an intermolecular distance of 4.0 bohrs (0.21 nm). 

In this study a full valence-bond, ab initio calculation of H2 - H2 interaction energy 
and electric dipole moment was carried out with accurate values for all molecular inte­
grals. In order to cover nuclear configuration space, linear, planar perpendicular, 
quadrilateral, and nonplanar perpendicular configurations (see fig. 1)were included with 
intermolecular distances from 2.5 to 5 .5  bohr (0.13 to 0.29 nm). In four of the config­
urations (fig. l(a), (c), (f), and (h)) both H2 molecules had equilibrium internuclear 
distances. The average H2 - H2 interaction energy was then calculated for a given inter­
molecular distance by taking weighted averages of the interaction energies of these four 
configurations. In five of the configurations (fig. l(b), (d), (e), (g), and (i)) one o� the 
H2 molecules had a nonequilibrium internuclear distance so  that the derivatives of the 
dipole moment with respect to internuclear distance could be calculated from the electric 
dipole moments of all nine configurations. The calculations in this report differ from 
those of references 9 and 10 in the configurations calculated and in mathematical details. 

The author is indebted to Professor V. Magnasco of the Istituto di Chimica In­
dustriale dell' Universita, Genoa, for providing listings and a deck of various computer 
programs for evaluating molecular integrals. Although these programs were not used 
for  this report, they were useful for checking and provided ideas for  the programs that 
were used. 

ANA LYS IS 

Model and Configurations. 

The interaction of two H2molecules may be calculated by the orthogonalized 
valence-bond theory of McWeeny (refs. 23 and 24), which utilizes symmetrically ortho­
gonalized atomic orbitals in the Born-Oppenheimer approximation. In this method 
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orthogonalized orbitals are formed from linear combinations of atomic orbitals. These 
are multiplied by spin eigenfunctions to give orthogonalized spin-orbitals . Formal 
orthogonalized valence-bond structures are formed from linear combinations of anti-
symmetrized products of the orthogonalized spin-orbitals . The system wave function 
consists of linear combinations of these structures. This involved procedure merely 
amounts to taking the proper linear combination of the octuple products of four atomic 
orbitals and four spin eigenfunctions. This method has the advantage that it allows full 
configuration interaction without serious complexity. It has previously been applied to 
the interaction of two H2 molecules by Magnasco and Musso (refs. 8 to 10). 

The simplest possible model for a full valence-bond calculation was chosen. The 
two H2 molecules were assumed to be in the ground electronic state so that for infinite 
separation each of the H2 molecules could be described by the covalent-ionic valence-
bond model of Weinbaum (ref. 25). In Weinbaum's model, two 1s atomic orbitals with 
equal orbital exponents (screening constants) were used. To be consistent, in the full 
valence-bond model used for H2 - H2 a set of four 1s atomic orbitals xp centered on 
the protons was selected. The respective orbital exponents 5P were assumed to be the 
same as in the respective isolated H2 molecules described by the Weinbaum model. If 
both molecules had the same internuclear distances, all orbital exponents were equal. 
If the two molecules had different internuclear distances, two orbital exponents had one 
value, and the other two had a different value. The four normalized 1s atomic orbitals 

xp were 

p = a, by6 ,  d 

where the i in parentheses indicates the ith electron, and r
Pi 

is the distance between 
proton p and electron i (symbols are given in appendix A). An orbital $(i), of course, 
reduces to the wave function for the ground state of an  H atom if [

P 
= 1.0 bohr-l. 

Four equilibrium configurations (fig. l(a), (c), (f), and (h)) were chosen so that 
interaction energy could be conveniently averaged over molecular orientations. The 
experimental equilibrium internuclear distance of 1.401446 bohrs (0.0741599 nm) for 
H2 (refs. 26 and 27)was used rather than Weinbaum's value of 1.4166 bohrs 
(0.074962 nm) (ref. 25) because of the ultimate application of this report to pressure 
induced absorption. 

The other five configurations in figure 1possessed a nonequilibrium internuclear 
distance so the derivatives of the electric dipole moment with respect to internuclear 
distance could be calculated from the nine configurations. 

In all nine configurations the intermolecular distance R, was varied. It had values 
of 2.5, 3.5, 4.5, and 5.5 bohrs (1bohr = 0.0529167 nm). 

5 




Energy and Interaction Energy 

To find the electronic energy of the H2 - H2 complex, a L6wdin transformation was 
performed on the orbitals, resulting in orthogonalized orbitals. Formal orthogonalized 
valence-bond structures were formed, and the matrix elements of the Hamiltonian were 
found. An eigenvalue problem was then solved to obtain the electronic energy. The 
nuclear repulsion energy was added to this to get the energy of the complex. The ener­
gies of the two infinitely separated H2 molecules were subtracted from the energy of the 
complex to yield the interaction energy. These steps are given in the following para­
graphs. 

L6wdin transformation. - The symmetrical orthogonalization procedure of LCwdin 
(ref. 28) was applied to the xp. The overlap integral is 

Let 

where R
Pg 

is the distance between protons p and q. If 5P = Cq, Spq is given by 
Slater (ref. 3, p. 50). If 5, # Eq, 

where 

" q r  bp 	- 5, 
2 RH 
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It is desired to find the LGwdin transformation matrix M-1/2 such thatx 

where x is a row vector with elements xp, and -x' is a row vector of the four ortho­-
gonalized orbitals x' P' First the eigenvalue problem 

is solved, where -S is a matrix with elements SPg' 
The matrix -d is diagonal, with 

eigenvalues as diagonal elements. Thus 

0 0 0 

di:I2 0 0 

0 d-1/2 033 

0 0 di:I2 

Finally, 

(9) 

Use of equation (6) then accomplishes the LCwdin transformation to obtain -x'. 
Formal orthogonalized valence-bond structures. - To produce the proper antisym­

metry, the X;, are combined in antisymmetrized products of orthogonalized spin-
orbitals. 

where a!(l)is the spin eigenfunction of electron 1with the component of spin angular 
momentum along the axis of quantization equal to h/2, and p(3)  is the spin eigenfunction 
of electron 3 with the component of spin angular momentum along the axis of quantization 
equal to -8/2. The shorthand notation is given on the left side of equation (lo), wherein 
a bar indicates p spin and no bar indicates a! spin. To facilitate computing for some 
purposes, the (pqx)are arranged in dictionary order in a 6 by 6 matrix (ref. 29). 
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( a b a  (ab- (abad) (ab- ( a b m  (ab­

(acZ) (acm (acZ) (acE) (acm) ( a d )  

( a d a  ( a d w  (ada3 (ad- ( a d m  (ad­

( b c a  (bc- (bcad) (bc- ( b c m  (bc­

(bdz) ( b d a  ( b a )  (bdE) (bdm) ( b d a  

(c&q ( c d z )  ( c d q  ( c d w  ( c d m  ( c d a  

For our purposes we will regard the (pq?;s) as a 36-element row vector with the elements 
numbered down the first column in equation (ll),then down the second column, etc. 
When numbered in this way, set 

‘pi = (pqm) i = 1,2, . . ., 36 (12) 

where p, q, F, and B are given in equation (11). 
The formal orthogonalized valence-bond structures +. are linear combinations of

J
the ‘pi. These qj are eigenfunctions of the total electron spin with total spin angular 
momentum of 0 and component of the total spin angular momentum along the axis of 
quantization of 0. They have been given by Magnasco and Muss0 (ref. 9) and in the 
present nomenclature are 
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-- 

where formal singly polar and doubly polar structures are included. All +i are ortho­
normal (see ref. 30) except q1 and +2. These may be made orthonormal by the Schmidt 
orthogonalization procedure, which results in replacing Q2 in equation (13)by a new 
+2 such that 

Equations (13) (excluding +F/2)and (14)can be represented by 

Vwhere - is a 36 by 20 matrix. The wave function of the system was taken as 

where -C is a column vector determined by minimizing the electronic energy E,. This 
is accomplished by the variation principle for orthonormal functions (ref. 31)which poses 
an eigenvalue problem 

H C = E  Ce­

where the smallest of the several  eigenvalues E, is the ground state electronic energy, 
and H is a matrix whose elements are given in the following sections.-

Matrix elements of the Hamiltonian. - The Hamiltonian operator for the electronic 
energy in atomic units with the hartree as the unit of energy is 

Here V: is the Laplacian operator for the coordinates of electron i, and the p sum­
mation is over protons a, b, c, and d. The elements of the -H matrix in equation (17) 
are then 



where T includes electron configuration and spin coordinates. From equations (15) 
and (19) 

(20) 

where 

The matrix elements (H ) can be found from Slater's rules (ref. 30 after correction of 
(0 i j  

a typographical e r ror )  if two kinds of integrals are known 

where r12 is the distance from electron 1 to electron 2, dvl is the volume element for 
electron 1, and dv2 is the volume element for electron 2. From equations (6), (22), 
and (23) 
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where 

The methods of evaluating Kkz, Ljkp, and Gmnop are given in appendixes B to D, re­
spectively . 

Energies. - The energy E is the electronic energy plus the nuclear repulsion 
energy. 

1 1 1E = E e + - 1 +-+- 1 + - 1 +-+- (29) 
Rab R a C  Rad Rbc Rbd 

The interaction energy Eint is the energy E minus the energies Em(rl) and Em(r2) 
of the isolated H2 molecules with internuclear distances r l  and r2, respectively. 

The diatomic internuclear distances used in equation (30) were the same as in the H2 - H2 
complex (see fig. 1) .  The H2 energies Em(r) were calculated for  the covalent-ionic 
valence-bond model (ref. 25). 

Average Interaction Energy 

The average interaction energy E, of two H2 molecules is, to a first approxi­
mation, the interaction energy for equilibrium diatomic internuclear distances averaged 
over all possible orientations of the two H2 molecules. Since only four configurations 
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Side view 

o----o w 

w 0 

w H 

0 o----o 

0 0 

0 H

H
H 

o--o 

0 

1 1 


End view Configuration 

0 A 

o-0-0 C 

o----o F+ H 

P : 
*	 H 

H F 
Figure 2. - Nine equil ibr ium orientat ions wi th  equal probability i f  

differences in interaction energy are neglected. These orienta­
t ions were used to determine weighting factors for calculat ing 
average interaction energy (see fig. 4). Configuration in  fig­
u re  1to which each of the orientat ions shown is  equivalent i s  
given at the right. 

with equilibrium diatomic internuclear distances were considered in this report, an 
additional approximation was necessary. Instead of using all possible orientations, the 
nine orientations in figure 2 were used. These are equally probable if differences in 
interaction energy are neglected, and each is equivalent to configurations A, C,  F, or 
H (see fig. 1). Hence, 

- 1 4 2 
Eint = 6 Eint, a + 9Eint, c +. 9Eint, f + -

2 
Eint,h 

where the constants are weighting factors. A better value of gint can be found by in­
cluding Boltzmann factors in the weighting (ref. 32, pp. 921-922), but then Eint would 
be complicated by temperature dependence. 
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-- 

Electric Dipole Moment 

Calculation of the dipole moment requires an electron population analysis in terms 
of the original nonorthogonal orbitals 5.A column vector - may be defined byC’ 

From equations (15), (16), and (32) 

C’ = vc  (33)-

The electron population in the orbital density 5% irrespective of spin state is 

where nrs and n F p p  are coefficients of spin-orbital products and are called 
npv by Magnasco and Muss0 (refs. 8 and 29), who give rules for evaluating themrs 
(ref. 29). 

The electron population in the orbital density 5%irrespective of spin state is 
(ref. 8) 

4 4 


m=1 n=1 

The normalized 1-electron population is 

P m = P  smPq 

where the four diagonal elements of the matrix ­?@’ give the atomic populations and the 
off-diagonal elements give the overlap populations. For instance, the population in  the 
overlap between orbitals centered on protons a and b is gab+Pba. The elements of 
the -9 matrix, of course, add to 4, the number of electrons. 

To find the dipole moment from -9, it is necessary to know locations of the atomic 
charge centers and the overlap charge centers. Cartesian coordinates with the origin 
half way between the molecules were chosen (see fig. l(a)). The jth Cartesian coordin­
ate of either type of charge center was designated 

Pqj’ 
where p and q correspond to 
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the two orbitals $ and % involved in an overlap charge or where p and q are equal and 
correspond to the one orbital involved in an atomic charge. The Cppj for atomic charges 
are, of course, identical to the coordinates of the protons C

pj' 
For overlap charges 

where A 
Pq 

is the displacement of the overlap charge center from the p-q geometric 
center, measured in the direction from p towards q and expressed in units of R

Pq'
If cp = cq, Am = 0 by symmetry. If cp # 5, 

The jth component of the dipole moment in atomic units is then 

4 4 

By symmetry, only the z component may be nonzero. 

Computer Programs 

Calculation of the energy, interaction energy, and electric dipole moment of H2 - H2 
was programmed in FORTRAN IV, IBM version 13, for  an IBM 7094 digital computer. 
One program calculated all the three- and four-center molecular integrals and had an 
average running time of 8.09  minutes per case. A second program did the remaining 
calculations and had an average running time of 0 . 3 8  minute per case. 
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RESULTS AND DISCUSSION 


In this section results are given for the covalent-ionic valence-bond model of H2. 
These results are then used to calculate H2 - H2 interaction energy and electric dipole 
moment. Comparisons are made with the results of other investigators. 

Covalent-Ionic Valence-Bond Model of H2 

The treatment of the covalent-ionic valence-bond model of H2given by Weinbaum 
(ref. 25) was reformulated so values of and Em could be calculated for given inter-
nuclear distance r. The computer program of Dellepiane, Ferro,  and Magnasco 
(ref. 33) was used to calculate the necessary integral logarithms. The results are given 
in table I. For an  internuclear distance of 1.4166 bohrs (0.074962 nm), we 

TABLE I. - ENERGY AND ORBITAL EXPONENT FOR COVALENT-

IONIC VALENCE -BOND MODEL OF HYDROGEN MOLECULE 

Internuclear distance, I Energy, I Orbital exponent, 
5 

m-1 

1.300000 6 . 8 7 9 2 ~ 1 0 - l ~-1.14462 -4.9899~10-l8 1.2240 2. 3131X1010 
al.401446 7.4160 -1.14779 -5.0037 1.2002 2.2681 
bl.416600 7.4962 -1.14790 -5.0042 1.1970 2.2620 

1.450000 7.6729 -1.14787 -5.0041 1.1896 2.2481 
1.530000 8.0963 -1.14646 -4.9979 1.1730 2.2167 

~~ 

= 1.197 bohrs-l, but Weinbaum got = 1.193 bohrs-l. However, our energy agrees 
exactly with Weinbaum's. The energy was not very sensitive to the value of 5. Values 
of Em and from table I were used in the following H2 - H2 calculations. 

H2 - H2 Energy and Interact ion Energy 

Energy and interaction energy of H2 - H2were calculated from equations (29) and 
(30), respectively, and are given in table II for nine nuclear configurations and four 
intermolecular distances. For  a given intermolecular distance, the linear configurations 
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TABLE T1. - ENERGY AND ELECTRIC DIPOLE MOMENT FOR TWO HYDROGEN MOLECULES 

Intermolecular Con- Energy, 
distance, Eigura- E 

Rr tiona 
-

bohrs m h&rtree J
-


2.5 1. 3229x10-lC -2.04492 -8. 9147X10-1' 
-2.03489 -8.8710 
-2.15035 -9.3743 
-2.15018 -9.3736 
-2.14658 -9.3579 
-2.18153 -9.5102 
-2.18060 -9.5062 
-2.18434 -9.5225 
-2.19410 -9.5650 

3.5 1. 8521X10-10 -2.25667 -9. 8378X10-18 
-2.25540 -9.8323 
-2.26824 -9.8882 
-2.26800 -9.8872 
-2.26735 -9.8844 
-2.27440 -9.9151 
-2.27412 
-2.27456 
-2.27706 

4.5 !.3813X10-10 	 -2.28895 
-2.28874 
-2.29084 
-2.29082 
-2.29070 
-2.29194 
-2.29193 
-2.29193 
-2.29257 

5.5 '.9104X10-10 	 -2.29453 
-2.29456 
-2.29484 
-2.29490 
-2.29488 
-2.29500 
-2.29506 
-2.29499 
-2.29519 

'See fig. I .  

-9.9139 
-9.9158 
-9.9267 

-9. 9785X10-18 
-9.9776 
-9.9868 
-9.9867 
-9.9861 
-9.9916 
-9.9915 
-9.9915 
-9.9943 

-10. 0028X10-18 
-10.0030 
-10.0042 
-10.0045 
-10.0044 
-10.0049 
-10.0052 
-10.0048 
-10.0057 

Interaction z -component of 
energy, electric dipole 

Eint momentb 

hartree J at. units C -m 

0.25066 1.0927X10-18 0 0 
.26078 1.1369 .034890 2 . 9 5 8 ~ 1 0 - ~ ~  
.14523 .6331 -.347786 - 2 . 9 4 9 ~ 1 0 - ~ ~  
.14549 .6343 -.343797 -2 .915~10-~ '  
.14909 .6499 -. 384906 . 3 . 2 6 3 ~ 1 0 - ~ '  
.11406 .4972 0 0 
.11506 .5016 .004599 3 . 8 9 9 ~ 1 0 ~ ~ ~  
.11124 .4849 0 0 
. lo157 .4428 .003720 3 . 1 5 4 ~ 1 0 - ~ ~  

0.03891 0. 1696X1O-l8 0 0 
.04026 .1755 .010739 9 . 1 0 4 ~ 1 0 - ~ ~  
.02734 .1192 -. 097871 . 8 . 2 9 7 ~ 1 0 - ~ ~  
.02766 .1206 -.097330 8 . 2 5 1 ~ 1 0 - ~ ~  
.02832 .1235 -. 109437 9 . 2 7 8 ~ 1 0 - ~ ~  
.02118 .0923 0 0 
.02155 .0939 .001596 1 . 3 5 3 ~ 1 0 - ~ ~  
.02102 .0916 0 0 
.01861 .0811 .001287 1 . 0 9 1 ~ 1 0 - ~ ~  

3.00663 D . 0 2 8 9 ~ 1 0 - ~ ~  00 

.00692 .0302 .002468 2 . 0 9 2 ~ 1 0 - ~ ~  
.00475 .0207 -. 024428 2 . 0 7 1 ~ 1 0 - ~ ~  
.00485 .0211 -.024457 2 . 0 7 3 ~ 1 0 - ~ ~  
.00497 .0217 -.027478 2 . 3 3 0 ~ 1 0 - ~ ~  
.00364 .0159 D Q 
.00374 .0163 .000457 3. 87x10-33 
.00365 .0159 D 0 
.00310 .0135 .000357 3. O ~ X I O - ~ ~  

1.00105 I. 0046X10-18 D 0 
.00111 .0048 .000498 4. ~ ~ x I o - ~ ~  
.00074 .0032 -.005873 4 . 9 7 9 ~ 1 0 - ~ ~  
.00076 .0033 -.005938 5 . 0 3 4 ~ 1 0 - ~ ~  
.00078 .0034 -.006616 5 . 6 0 9 ~ 1 0 - ~ ~  
.00058 .0025 1 0 
.00060 .0026 .000111 9 . 4 x 1 0 - ~ ~  
.00059 .0026 1 D 
.00048 .0021 .000084 7. I X I O - ~ ~  

bSee fig. l(a) for coordinates. Other components of the electric dipole moment are zero by symmetry. 
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Source of theory 
0 Taylor (ref. 71 
0 Griffing and Vanderslice (ref. 4)-This report (eq. (3))

Schwartz and Schaad (ref. 14)
Ruffa and Griffing (ref. 6) 
Mason and Hirschfelder lref. 17) 

10-31 I 
(a) Linear configuration A (see fig. l(a)). 

-This report (eq. (30))-._- Mason and Hirschfelder (ref. 171 

loo[ 


I I I 
1.5 2 0  2 5  3.'0~10-~~ 

Intermolecular distance, Rr, m 

(b) Planar perpendicular configuration C (see fig. l(c)). 

Figure 3. - Interaction energy for four configurations of two hydrogen molecules. each 
configuration having equilibrium internuclear distances in both molecules. 
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Source of theory 

This report leq. (30)) 

Mason and Hirschfelder (ref. 17) 

Magnasco and M U S S ~ 
(ref. 9)  

(c) Quadrilateral configuration F (see fig. Ilf)). The curves for this report and from refer­
ence 9coincide from R, = 2.5 to 4.2478 bohrs. 

This report (eq. (30))- Mason and Hirschfelder (ref. 17) 

loo[ 


'\. 
'\* 

I I I I 
1.5 20 2 5  3. O X ~ O - ~ O  

Intermolecular distanm, Rr, m 
Id) Nonplanar perpendicular configuration H (see fig. UhH. 

Figure 3. - Concluded, 
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had the highest interaction energies, followed by the planar perpendicular configurations. 
The quadrilateral and nonplanar perpendicular configurations had the lowest interaction 
energies. It is not safe to draw any conclusions about the change in interaction energy 
between equilibrium and nonequilibrium configurations because the experimental equili­
brium internuclear distance was used in this report rather than Weinbaum's value 
(ref. 25 and table I). Values of interaction energy in table 11are plotted in figure 3 for 
the four equilibrium configurations. The interaction energies varied approximately 
exponentially with intermolecular distance. 

H2 - H2 Average Interaction Energy 

The average interaction energy of H2 - H2 was calculated from equation (31) for four 
intermolecular distances. Results are given in table III and are plotted in figure 4. 

TABLE III. - AVERAGE INTERACTION 

ENERGY FOR TWO HYDROGEN MOLE -

CULES WITH EQUILIBRIUM INTER-

NUCLEAR DISTANCES~ 

2.5 1. 3229x10-lo 0.14246 6. 210X10-19 
3.5 1.8521 .02585 1.127 
4.5 2.3813 .00447 .195 

5.5 2.9104 .00071 .031 

aEquilibrium internuclear distances of both 
molecules were 1.401446 bohrs 
( 7 . 4 1 6 0 ~ 1 0 - ~ ~m) (ref. 26). 

H2 - H2 Electric Dipole Moment and I ts Derivatives 

The electric dipole moment of H2 - H2 was calculated from equation (39) for  the 
nine configurations in figure 1 and four intermolecular distances. The x and y com­
ponents were all essentially zero, as required by symmetry. The z component is given 
in table II. The planar perpendicular configurations had the largest magnitude of dipole 
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E 
0)c.-c 
g 10-20 
E This report (eq. (31))al


P Viscosity and equation of state experiments 

I- f i t  wi th Morse potential (ref. 22). Curve 
has been extended to smaller R, than iust i f ied 1.'\ 

Semiempirical theory  (ref. 17) 

10-21E Semiempirical theory (ref. 18) 

10-4
2.0 2.5 3.0 3.5 4.0 4.5 5.0 

1 
5.5 6.0 

Intermolecular distance, Rr, bohrs 

I I I I 

1.5 2 0  2 5  3.ox10-10 
Intermolecular distance, Rr, m 

Figure 4. - Average interact ion energy for two hydrogen molecules. The curve  labelled 
"This report" was obtained by averaging interact ion energies for t h e  n i n e  equally 
probable orientations given in f igure  2. 

moment because of their high degree of asymmetry. Equilibrium configurations A, F, 
and H had zero dipole moment by symmetry. The z component of dipole moment of 
equilibrium configuration C is plotted in figure 5. It varies approximately exponentially 
with intermolecular distance. The derivatives of the dipole moment with respect to 
internuclear distances were calculated from the dipole moments of the nine configurations 
(see table II) and are shown in figure 6. 

Comparison of H2 - H2 Results wi th  Other Investigators 

Interaction energy. - Comparisons of Eint from equation (30) with ab initio results 
of other investigators are given in figure 3 for four Ha - H2 configurations with equil­
ibrium internuclear distances in both molecules. 
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This report (eq. (39))---- Large R, approximation using Qs 
f rom ref. 34 and a f rom ref. 35 

Large Rr approximation as above 
plus overlap contr ibut ion f rom 
ref. 20 

I I 1 I I I L 
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 

Intermolecular distance, Rr, bohrs 

I I I 
1. 5 2 0  2 5  3.10x10-10 

Intermolecular distance, Rr, m 

Figure 5. - z component of electric dipole moment for planar perpendicular conf igurat ion C 
(see fig. Uc))  of two hydrogen molecules. Coordinates are shown in f igure  Ua). 

Figure 3(a) is for the linear configuration. The interaction energies of Griffing and 
Vanderslice (ref. 4) and Ruffa and Griffing (ref. 6) a r e  high, possibly because of in­
accurate molecular integrals. The energy of Taylor (ref. 7) is also high, possibly be­
cause he set all the orbital exponents equal to one. The energies of Schwartz and Schaad 
(ref. 14)are lower than our energies. The variation principle states that E is an upper 
limit, but gives no information on Eint. Consequently, this principle cannot be used to 
show that Schwartz and Schaad's Eint is best. However, since they used 24 orbitals 
compared with four in this report, their Eint is probably best for the range of Rr they 
covered. The theory of Mason and Hirschfelder (ref. 17) is believed best at large Rr 
but is not accurate at small  Rr because it is principally a perturbation calculation. Its 
superiority at large Rr is due to its accurate semiempirical treatment of dispersion 
energy. 

Figures 3(b) to (d) are for  the planar perpendicular, quadrilateral, and nonplanar 
perpendicular configurations, respectively. The Eint of Mason and Hirschfelder 
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Planar perpendicu lar1 ',"t- Nonplanar perpendicularA -I 
,/--

I /L Planar perpendicular 

(ref. 17) are believed best at large R,. For the quadrilateral configuration there is no 
discernible difference between Magnasco and Musso's Eint (ref. 9) and our Eint. 

Average interaction energy. - Comparison of Eint from equation (31) with results 
of other investigators are given in figure 4 for H2 - H2 with equilibrium internuclear 
distances in both molecules. The Lennard-Jones 6-12 potential (ref. 32) was fitted to 
data from moderate temperature equation-of -state experiments and hence is not accurate 
at small  R,. The Morse potential (ref. 22) was fitted to moderate temperature equation­
of-state and viscosity data and also to viscosity data up to 2340 K (ref. 21); therefore, it 
should be valid down to R, = 4.0 bohrs (2. lXIO-lo m). However, it is obviously wrong 
for small  enough Rr because it does not approach infinity as Rr approaches zero. 
Thus its agreement with equation (31) for 2. 5 5 R r 5  4 bohrs (0 .135Rr5  0.21 nm) is 
surprising. Two semiempirical theories (refs. 17 and 18) are included in figure 4 for 
reference only. I believe the excessive values of Eint from equation (31) for large Rr 



are due to insufficient allowance for electron correlation in the wave function. This 
causes the magnitude of the dispersion energy (which is a negative quantity) to be low. 

Electric dipole moment. - Comparisons of pz from equation (39)with results of 
other investigators are given in figure 5 for the planar perpendicular configuration. The 
large Rr approximation was obtained by considering the polarization of each H2molecule 
by the electric quadrupole of the other. The scalar quadrupole moment Qs and polar­
izability a! of H2were obtained from Kolos and Wolniewicz (refs. 34 and 35) and inspire 
confidence. The resulting pi varies as 1/R: as shown and is correct without much 
doubt for large enough R,. A curve is also given in figure 5 for the large Rr approxi­
mation plus a semiempirical overlap contribution (ref. 20). The overlap contribution is 
not large, so the trend is essentially the same as for the large Rr approximation alone. 
Equation (39)does not follow either dashed curve for Rr >4.5 bohrs (0.24nm) and, in 
fact, is even curved the wrong way. I believe this difficulty is due to the model used: 
at large Rr it essentially describes, two covalent-ionic valence-bond H2molecules, 
which have no polarizability perpendicular to their axes and probably have incorrect 
quadrupole moments. (The quadrupole moment is very sensitive to the electronic charge 
distribution. ) Consequently, the orthogonalized valence-bond theory used in this report  
does not give reliable p, for  Rr >4.5 bohrs (0.24nm) despite the inclusion of singly 
and doubly polar structures. 

CONCLUDING REMARKS 

Full valence-bond ab initio calculations of H2 - H2 interaction energy and electric 
dipole moment were carried out with accurate values for all molecular integrals. Lin­
ear, planar perpendicular, quadrilateral, and nonplanar perpendicular configurations 
were included with intermolecular distances from 2.5 to 5. 5 bohr (0.13to 0.29 nm). A 
weighted average of the interaction energies of the four equilibrium configurations was 
then taken. 

The interaction energies obtained appear to be valid for intermolecular distances 
less than 4.5 bohr (0.24nm) but are too large at appreciably greater intermolecular 
distances because of insufficient allowance for electron correlation in the wave function. 

Fisher (ref. 22)has fitted a Morse potential to viscosity and equation-of -state data, 
and this potential should be valid down to intermolecular distances of 4.0 bohrs (0.21 
nm), based on the temperatures at which the data were taken. The calculations in this 
report  show that this Morse potential is also a good approximation for intermolecular 
distances between 2.5 and 4.0 bohrs (0.13and 0.21 nm). Consequently, this Morse po­
tential is useful for practical applications for all Rr greater than 2.5 bohrs (0.13nm). 

The electric dipole moments obtained by the full valence-bond calculation appear to ,,. 
23 




be approximately correct for intermolecular distances up to 4 .5  bohrs (0.24 nm). For 
appreciably larger distances they are too small  due to limitations of the model. The 
derivatives of the dipole moment with respect to the internuclear distances of the H2 
molecules were also obtained. These are necessary to calculate pressure-induced vi­
brational absorption coefficients. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 23, 1969, 
122-28. 

... 
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APPENDIX A 

SYMBOLS 

A definite integral involving ex- G i  definite integral involving ex­
ponential ponential and Legendre func­

( a b 3  shorthand notation for anti- tion of first kind 

symmetrized product of ortho- Gmnop two-electron integral of 1s 
gonalized spin-orbitals orbitals 

- -
9 * 

functions +
j 

C' column vector of coefficients of H Hamiltonian operator for elec-

vi  trans 

C column vector of coefficients of H Hamiltonian matrix with basis 

-

'Pj 
jih Cartesian coordinate of Hk definite integral involving ex-

proton p ponential and Legendre func­
- tions of first and second kinds 

ppj 
jth Cartesian coordinate of 

center of atomic charge p element of -H 

cpsj 
jth Cartesian coordinate of Hamiltonian matrix with basis 

-center of overlap charge pg 
H'p 

functions 'pi 

cE 
element of 	 C' (Hq) 

i j  
element of H- 9. 


-d matrix of overlap eigenvalues li Planck constant divided by 27r 
-d-li2 

-lI2 diagonal element of -d 4 7 2  
K center of orbital $ 

E electronic and nuclear repulsion 
energy of complex 

K; definite integral involving ex-
ponential and Legendre func-

electronic energy tion of first kind 

Eint interaction energy Kk2 kinetic energy integral 

Eint average interaction energy Ljkp 
nuclear attraction integral 

inverse square root of d J center of orbital xj
dii 

-

Em electronic and nuclear repulsion 
L i  definite integral involving ex-

energy of diatomic molecule ponential and Legendre-
F.. one-electron integral of ortho- function of second kind
4 

gonalized orbitals M center of orbital x,-
Gijkt two-electron integral of ortho­

gonalized orbitals 
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LSwdin transformation matrix r, ri internuclear distance of diatomic 
molecule i 

element of M- 1/2 
( M y )  ki x 
N center of orbital 

mana! coefficients of spin-orbital r i j  distance between electron or 
5 s  

products with two CL! spins proton i and electron j 

coefficients of spin-orbital -S matrix of S
Pq 

products with two P spins overlap integral for xp and XS 
P center of proton p T definite integral involving ex­

9- matrix of 9
Pg 

ponential 

-U unitary matrix 
'k 	 Legendre function of first 

N 

kind -U tranpose of -U 

PLnn electron population in the umn(2) electrostatic potential at electron 
orbital density k& 2 due to the bicentric charge 
irrespective of spin state distribution &(l)s(l) 

electron population in the U variable of integration 
orbital density xp% ir-	 V matrix relating q3 and cp- - -
respective of spin state 	 N 

V transpose of -V-
normalized one -electron 

population vi volume in configuration space for  
electron i 

constants in Legendre func­
tion of first kind 

&k 
kind in units of R

PJ
./2 

QS 
scalar quadrupole moment 

x,y,z Cartesian coordinates 

vary) a!(i) spin eigenfunction of electron i 

(Cm - So)Rmo 
with component of spin angular 
momentum along the axis of 

('Em - Sp)Rmp/' quantization equal to h/2 

Legendre function of second x k , z k  x and z coordinates of point K 

" (Ep - Eq)RW/2 (subscripts a! polarizability 

distance between points p P(i) spin eigenfunction of electron i 
and q with component of spin angular 

Rr intermolecular distance momentum along the axis of 
(see fig. 1) quantization equal to -E/2 

26 



A
Pg 

displacement of overlap charge 
center for p-q geometric 
center, measured in direction 
from p towards q and ex­
pressed in units of RPq 

5 orbital exponent 

5P 
orbital exponent of ‘cp 

8,p,  v spheroidal coordinates 

x - 1 / P  

pk p of point K 

E.l, finite upper limit for p inte­
gration 

p(<) smaller of pl and p2 

p(>) larger of pl and p2 

7 volume in configuration and spin 
space of four electrons 

row vector with elements ‘pi 

antisymmetrized product of 
orthogonalized spin-orbitals 

row vector with elements xp 
row vector with elements x;, 
1s orbital of electron i centered 

onproton p 

orthogonalized orbital of electron 
i 

wave function of system 

row vector with elements +j 
formal orthogonalized valence -

bond structure 
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APPENDIX B 

EVALUATION OF KINETIC ENERGY INTEGRALS 

Herein methods are given for evaluating kinetic eneTgy integrals involving 1s atomic 
orbitals (eq. (1)) with equal or unequal orbital exponents. These integrals all have the 
form 

Equal Orbital Exponents 

Analytic expressions for Kkz for  the two cases k = 1 and k # Z have been given 
in reference 3 (p. 50) (but a typographical e r r o r  must be corrected in the k # t case). 

Unequal Orbital Exponents 

If k # Z and the orbital exponents are unequal, the integral in equation (Bl) may be 
found analytically by the methods in reference 3. 

where wkl is given by equation (3) and where 
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q 3  (ck - cZ)RkZy 

2 


All Kkt were evaluated to within &1 in the sixth significant digit. 
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APPENDIX C 

EVALUATION OF NUCLEAR ATTRACTION INTEGRALS 

Methods for evaluating nuclear attraction integrals involving 1s atomic orbitals 
(eq. (1)) with equal or unequal orbital exponents are given herein. These integrals all 
have the form 

where r
P l  

is the distance from proton p to electron 1. 

Equal Orbital Exponents 

If all three subscripts of L
jkp 

are equal or if only two of them are equal, analytic 
expressions for  Ljkp are given in reference 3 (p. 50). If all subscripts are different, 
numerical integration is required and is described in the following paragraphs. 

Numerical integration of three-center integrals is best done in spheroidal coor­
dinates (ref. 3). First, however, a set of Cartesian coordinates is selected with the 
originhalf waybetween P and J andwith the z axis in the directionfrom P to J. 

Z 

x 
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The x axis is chosen so K is in the x-z plane with xk zero or positive. The three 
spheroidal coordinates 8, p,  and v can now be defined. The azimuthal angle measured 
around the z axis as shown is called 8. The other two coordinates are 

where rP l  is the distance from P to dvl, and r
j l  

is the distance from J to dvl. 
Surfaces d constant p are ellipsoids of revolution about the z axis with foci at P and 
J. Surfaces of constant v are hyperboloids of revolution about the z axis with foci at 
P and J except for v = 0, which is the x-y plane. 

In these coordinates, equation (Cl) becomes 

where xk and zk are xk and Zk,  respectively, in units of R
PJ
./2. The 0 integration 

was done by a single Gaussian quadrature. The v integration was done by using two 
Gaussian quadratures: one from -1 to vk and one from vk to 1. The p integration 
was also split into two parts. Integration from 1 to & was done by Gaussian quadra­
ture.  From pk to an upper limit p, the integration was done by transforming the 
integral so it was with respect to a variable h = -l /p and applying Gaussian quadrature. 
(The author is indebted to Professor V. Magnasco, Universita di Genova, Genoa, for 
this idea.) In each case an appropriate finite p, had to be calculated to replace 00 as 
the upper limit in the p integration. 

Use of the coordinate system shown was superior to use of the coordinate system in 
reference 36 because it gave better accuracy for the same number of integration points 
for  cases where J, K, and P were in line or almost in line. This was apparently be­
cause the integrand in equation (C4) is everywhere finite, which is not the case for the 
equation in different coordinates in reference 36. 
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Unequal Orbital Exponents 

If j = k # p, the only two orbital exponents that occur in the integral are identical. 
However, if p = j # k or p = k # j ,  the unequal orbital exponents result in new express­
ions for  L

jkp' For the case p = k # j 

where the methods of reference 3 were used and where 

For the case where none of the subscripts of L
jkp 

are equal, equation (C4)is applicable. 
All Ljkp were evaluated to within *3 in the sixth significant digit. 
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APPENDIX D 

EVALUATION OF TWO-ELECTRON INTEGRALS 

Methods are given for evaluating two -electron integrals involving 1 s  atomic orbitals 
(eq. (1))with equal or  unequal orbital exponents. These integrals all have the form 

where r12 is the distance between the two electrons. 

Equal Orbital Exponents 

One-center integral. - An expression for Gmnop when all the subscripts a r e  equal 
is given in reference 3 (p. 65). 

-Two-center Coulomb integral. - If m = n and o = p, an expression for Gmnop is 
given in reference 3 (p. 50). 

Two-center exchange integral. - If m = o and n = p, an expression for Gmnop is 
given in reference 3 (p. 50), but it requires correction of a typographical e r ror .  The 
expression involves the integral logarithm, which was evaluated using the program of 
Dellepiane, Ferro,  and Magnasco (ref. 33). 

Two-center~ ~ _ _~~ ~ hybrid- integral. - An expression for Gmnop if three of the subscripts 
are identical is given in reference 3 (p. 65). 

Three- center-~Coulomb integral. - If m = n # o # p or  m # n # o = p, the integral_ _  

must be integrated numerically. The method of Magnasco and Dellepiane (ref. 36) was 
used except that on the outer p integration range the p integral was transformed s o  
that it was  with respect to a variable X = -1/p and Gaussian quadrature was applied. 

Three-center exchange integral. - If one of the first two subscripts equalled one of 
the last two subscripts of Gmnop, the integral w a s  integrated numerically by the method 
of Magnasco and Dellepiane (ref. 37) except that on the outer p integration range the 
method of the preceding paragraph was used. 

Four-center integral. - For cases where all the subscripts of Gmnop were differ­
ent, an evaluation method has been given by Magnasco and Dellepiane (ref. 37). This 
method was used with three modifications to improve the accuracy: (1)on the outer p 

integration range the ,u integral was transformed s o  it was with respect to a variable 
X = - l /p ,  and Gaussian quadrature was applied; (2) in some cases three p integration 
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ranges were used instead of two; and (3) in some cases three v integration ranges were 
used instead of two. 

Unequal Orbital Exponents 

Two-center Coulomb integral. - Here m = n and o = p. Using the methods in 
reference 3 gives 

where 

and 

Two-center exchange integral. - Here m = o and n = p. This can be expressed a s  
an infinite series.  Spheroidal coordinates were used for both electrons. The quantity 
1/r12 was expanded in the Newmann expansion (ref. 3, p. 266) with the result 
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where wmn is given by equation (3) and 

Here the Pk and Qk are Legendre functions of the first and second kinds, respectively, 
p ( q  is the smaller of p1 and p2, and p(>) is the larger of pl and pa. The Gk 
integrals were evaluated by Rosen (ref. 38). The Hk integrals were evaluated by James 
and Coolidge (ref. 39) and Rosen (ref. 40). 

Two-center hybrid integral. - Here, three of the subscripts are identical. This 
~~ -

case may be integrated by methods in reference 3. If the first three subscripts are 
identical, 

where wmP is given by equation (3) and 
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-q z  3Cm - Cp 
2 RmP 

Three-center Coulomb integral. - Here, m = n # o # p or  m # n # o = p in 

Gmnop. The method of evaluation was the same as for  equal orbital exponents. 
Three-center exchange and four-center integrals. - The methods of evaluating these 

integrals were the same as for  equal orbital exponents with the following exception. The 
methods of Magnasco and Dellepiane (ref. 37) require evaluation of 

as a step in their procedure, where Umn(2) is the electrostatic potential at electron 2 
due to the bicentric charge distribution &(l)&(l). They give an expression for 
Umn(2) if Cm = Cn, but not if 5, # 5,. A solution for Cm # Cn will now be given. 

An infinite se r ies  for Umn(2) with Cm # Cn may be derived by using spheroidal 
coordinates for both electrons 1and 2. These coordinates were the same as in appen­
dix C except that M replaced P and N replaced J. The quantity l/r12 was ex­
pressed as a Neumann expansion. The result is 

where 

and 
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The integrals Kk may easily be evaluated explicitly. To do this, the Legendre 
function of the first kind may be expressed as 

j=O 

where the %j are constants. Substituting equation (D17) into (015, gives 

where 

A ( w , ~ ,0)= -1 (-e-WP+ e-W) 
W 

and the recursion relation is 

A(w,p, h) = L&phe-WP+ e-w + hA(w, p, h - 1 1  
W 

The integrals $ are not so easy to evaluate to six significant digits. The Legendre 
function of the second kind may be expanded in a hypergeometric series 

+ (5. + .  . 
(k + :)(k + f)(k + i ) 6 p 6  
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which is abbreviated as 

00 


k!
&,(PI = 

pk+' (2k + l)!! cj=O 

Substituting equation (D22) into (D16) gives 

k! 
(2k + l)!! 5: T(w, p,  i-2j -k-1) 

j=O 

where 

and h can be a positive or negative integer or zero. Equation (D24) was integrated 
analytically to get T in terms of exponentials and integral logarithms. I� pLL 1.2,  
equation (D23) gives six significant digits without too many terms. For p 5  1.2,  it is 
better to use 

Lk(w, p )  = 6'"e-""�&(u)uidu + <(w, 1.2)  

where the first and second terms on the right were evaluated by Gaussian quadrature and 
equation (D23), respectively. 

General. - A l l  Gmnop were evaluated to within *4 in the sixth significant digit. 
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